An Efficient Frequent Pattern Mining Method and its Parallelization in Transactional Databases

نویسندگان

  • Seyed Mostafa Fakhrahmad
  • Gholamhossein Dastghaibyfard
چکیده

One of the important and well-researched problems in data mining is mining association rules from transactional databases, where each transaction consists of a set of items. The main operation in this discovery process is computing the occurrence frequency of the interesting set of items. i.e., Association Rule mining algorithms search for the set of all subsets of items that frequently occur in many database transactions. In practice, we are usually faced with large data warehouses, which contain a large number of transactions and an exponentially large space of candidate itemsets, which have to be verified. A potential solution to the computation complexity is to parallelize the mining algorithm. In this paper, four parallel versions of a novel sequential mining algorithm for discovery of frequent itemsets are proposed. The parallelized solutions are compared analytically and experimentally, by considering some important factors, such as time complexity, communication rate, load balancing, etc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed Regular Pattern Mining Using Vertical Format

Discovering interesting patterns in transactional databases is often a challenging area by the length of patterns and number of transactions in data mining, which is prohibitively expensive in both time and space. Closed itemset mining is introduced from traditional frequent pattern mining and having its own importance in data mining applications. Recently, regular itemset mining gained lot of ...

متن کامل

Discovering Periodic-Frequent Patterns in Transactional Databases

Since mining frequent patterns from transactional databases involves an exponential mining space and generates a huge number of patterns, efficient discovery of user-interest-based frequent pattern set becomes the first priority for a mining algorithm. In many real-world scenarios it is often sufficient to mine a small interesting representative subset of frequent patterns. Temporal periodicity...

متن کامل

Discovery of Frequent Itemsets: Frequent Item Tree-Based Approach

Mining frequent patterns in large transactional databases is a highly researched area in the field of data mining. Existing frequent pattern discovering algorithms suffer from many problems regarding the high memory dependency when mining large amount of data, computational and I/O cost. Additionally, the recursive mining process to mine these structures is also too voracious in memory resource...

متن کامل

MaRFI: Maximal Regular Frequent Itemset Mining using a pair of Transaction-ids

Frequent pattern mining is the fundamental and most dominant research area in data mining. Maximal frequent patterns are one of the compact representations of frequent itemsets. There is more number of algorithms to find maximal frequent patterns that are suitable for mining transactional databases. Users not only interested in occurrence frequency but may be interested on frequent patterns tha...

متن کامل

Incremental Mining for Regular Frequent Patterns in Vertical Format

In the real world database updates continuously in several online applications like super market, network monitoring, web administration, stock market etc. Frequent pattern mining is a fundamental and essential area in data mining research. Not only occurrence frequency of a pattern but also occurrence behaviour of a pattern may be treated as important criteria to measure the interestingness of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Inf. Sci. Eng.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2011